On the Existence of Asymptotically Stable Solutions for a Mixed Functional Integral Equation in N Variables

نویسندگان

  • LE THI
  • PHUONG NGOC
  • NGUYEN THANH LONG
  • Zeqing Liu
  • Shin Min Kang
  • Jeong Sheok Ume
چکیده

The aim of this paper is to study the existence of asymptotically stable solutions for a mixed functional integral equation in N variables. This is done by using a fixed point theorem of Krasnosel’skii type in the Fréchet space and the new integral inequalities with explicit estimate. In order to illustrate the results obtained here, an example is given. Mathematics subject classification (2010): 47H10, 45G10, 47N20, 65J15.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation

In this paper we investigate the existence and uniqueness for Volterra-Fredholm type integral equations and extension of this type of integral equations. The result is obtained by using the  coupled fixed point theorems in the framework of Banach space $ X=C([a,b],mathbb{R})$. Finally, we  give an example to illustrate the applications of our results.

متن کامل

Nonlinear Fuzzy Volterra Integro-differential Equation of N-th Order: Analytic Solution and Existence and Uniqueness of Solution

This paper focuses on the fuzzy Volterra integro-differential equation of nth order of the second-kind with nonlinear fuzzy kernel and initial values. The derived integral equations are solvable, the solutions of which are unique under certain conditions. The existence and uniqueness of the solutions are investigated in a theorem and an upper boundary is found for solutions. Comparison of the e...

متن کامل

Upper bounds on the solutions to n = p+m^2

ardy and Littlewood conjectured that every large integer $n$ that is not a square is the sum of a prime and a square. They believed that the number $mathcal{R}(n)$ of such representations for $n = p+m^2$ is asymptotically given by begin{equation*} mathcal{R}(n) sim frac{sqrt{n}}{log n}prod_{p=3}^{infty}left(1-frac{1}{p-1}left(frac{n}{p}right)right), end{equation*} where $p$ is a prime, $m$ is a...

متن کامل

Existence of Mild Solutions to a Cauchy Problem Presented by Fractional Evolution Equation with an Integral Initial Condition

In this article, we apply two new fixed point theorems to investigate the existence of mild solutions for a nonlocal fractional Cauchy problem with an integral initial condition in Banach spaces.

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014